AMSU Forward Model and Obs.-Calc. T_B

P. Rosenkranz AIRS Team Meeting May 3-6, 2005

AMSU Temperature Channels 4 to 9

- Brightness temperatures were calculated from 5 dedicated raob sets, using retrieved surface brightness.
- (Observed Ta calculated Tb) is compared with bias tuning from GSFC.

Dome-C soundings may have a warm bias...

... but some of the discrepancies may be contributed by a surface colder than the air (\sim < 0.4 K) and scattering more specular than Lambertian (< 0.4 K).

AMSU Surface/H₂O Channels 1, 2, 3, 15

- Brightness temperatures were calculated for ARM-TWP using in-situ wind speed with the new stand-alone counterpart of the L2 forward model.
- The stand-alone surface model is based on regression of retrieved surface parameters against AVN wind speed (see JGR manuscript by Rosenkranz & Barnet). It replaced the Fastem model used previously.

The AMSU-derived model shows sensitivity to wind increasing with frequency, while Fastem sensitivity decreases with frequency due to its small-scale component.

The AMSU model results from a linear regression, while Fastem is nonlinear with wind speed.

Ratio of reflected to direct path length also increases with wind speed.

 $\rho \sim windspeed$

(obtained through regression)

Conclusions

- The present bias tuning fits AMSU channels 4 9 fairly well, but further examination of temperature extremes is advisable.
- AMSU window channel tuning may need some adjustments, which should be done using m_rta revision of 2/2/05 or later. However, the same bias tuning may not be optimum for both land and water surfaces.